

Three Phase Multifunction Table Instruction Manual

1 Product Brief introduction

The three-phase multi-function meter is designed for the electric power intelligent monitoring and electric energy metering needs of electric power system, industrial and mining enterprises, public facilities, intelligent buildings and so on, high-precision measurement of all common power parameters in three-phase grid; three-phase voltage, three-phase current. active power, reactive power, apparent power, frequency, power factor, and with 485 communication functions.

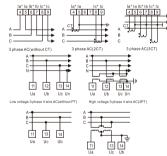
2. Technical parameter

	Item		Parameter	
Г	Wiring		3 phase 4 lines/3 phase 3 lines	
	Voltag	Measurement range	AC(20~500)V	
Ħ		Over load	Continuous: 1.2 multiple, instantaneous: 2 multiple/1s	
input		Power consumption	<1VA (per phase)	
Signal	Current	Measurement range	AC(10mA~5A)	
		Over load	Continuous: 1.2 multiple, instantaneous: 10 multiple/5s	
		Power consumption	< 0.4VA (per phase)	
	Frequency		45~65Hz	
Г	Power supply		AC/DC 60~280V, ≤5VA	
	Communication		RS485 communication interface, physical layer isolation. Meet the international standard of MODBUS-RTU agreement Communication speed 1200~38400 Test type N81,E81,081	

Swithcing Input/Output | Passive dry contact

	Measurement class	Power: 0. 5 Frequency: ±0. 2Hz Active power: 1. 0 Reactive power: 2. 0
	Display mode	LED display, LCD display
	Environment	Working temperature: -10~+45°C Storage temperature: -25~+50°C Relative humidity: <85%RH
Ī	Safety	Isolation:resistance of Signal input, power source and output terminal to cover>100MΩ Withstand Voltage: Signal Input/power supply , Power Supply/Signal output: 4C 2kV, Signal Input/Signal Output: 1kV

-01-


3. Installation and Wiring

3.1 Size(mm)

Panel Size(mm): 96×96	Hole Size(mm): 91×91	Depth(mm): 38
Panel Size(mm): 80×80	Hole Size(mm): 76×76	Depth(mm): 38
Panal Siza(mm): 72x72	Hole Size(mm): 67x67	Denth(mm): 38

3.2 Wiring terminal function

Power supply	1,2	AC/DC60 ~ 280V ≤5VA	
Current signal	4,5,6,7,8,9	No.4,6,8 are the terminal of current signal input No.5,7,9 are the terminal of current signal output	
Voltage signal	11,12,13,14	Three phase Voltage signal input is Ua, Ub,Uc,Un	
RS485	58,59	A, B terminal	
Switching input	70,71	1 loops of switching input, 70 is the common terminal	

Low voltage:3 phase 3 wire AC(without PT)

High voltage:3 phase 3 wire AC(2PT) Note: The meter is provided with two kinds of wiring modes, please make sure

the actual wiring is same to the set wiring in the meter. The wiring diagram and technical parameter printed on the product shall be prevailed. -02-

4. Programme operation

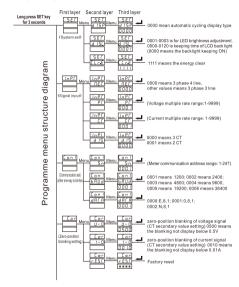
Under programming status, digital interface adopts layered structure menu type, meter supply three lines digital display.

No.1 line is first layer menu information.

No.2 line is second layer menu information,

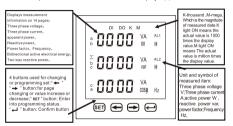
No.3 line is third layer menu information.

For example: No.1 line: INPT means signal input.


No.2 line:CT current ratio No. 3 line: 5 means the CT value. CT value=25/5A=5.

Parameter setting can be customized according to requirements

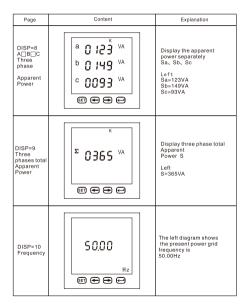
Parameter setting can be customized according to requirements.				
No.1 layer	No.2 layer	No.3 layer	Description	
	Display DISP	0000-0014	0000 means automatic cyclingdisplay	
System set	DISL	0001-0003 or 0000-0120	0001-0003 is for LED brightness adjustment 0000-0120 is keeping time of LCD back light	
021	Energy clear CLr.E	1111	1111 means the energy clear, other values are invalid	
	Wiring mode NET	0000 or other values	0000 means 3 phase 4 line, other values means 3 phase 3 line	
Signal input INPT	Voltage transformation ratio PT	1 ~ 9999	PT value= PT primary value/ secondary value	
	Current transformation ratio CT	1 ~ 9999	CT value= CT primary value/ secondary value	
	address SN	1 ~ 247	Meter address range: 1-247	
Communication set CONi (i is 1~2)	Communication speed BAUD	0001 ~ 0006	0001为1200; 0002为2400; 0003为4800; 0004为9600; 0005为19200; 0006为38400	
	Data format DATA	0000 ~ 0002	0000:E,8,1; 0001:0,8,1; 0002:N,8,1;	

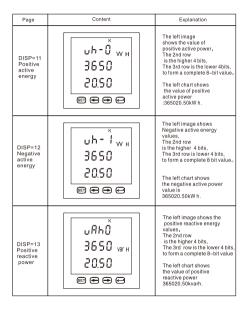

Note: The above menu is applied to the product with complete function. If you find there is no such menu in the product or the menu is not working, It means the product not supporting the function.

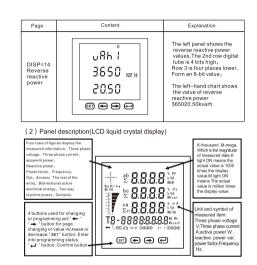
Programming step

Operation instruction:

- (a) After revised the data of third layer (or option), need press "← " button to
- back the second menu then the setting take effect.
- (b) The wiring method can be revised refer to the actual wiring mode.
 (c) Under normal condition, the label of product have remarked the model
- (c)Under normal condition, the label of product have remarked the model parameter and factory setting parameter. The user can reset the parameters according to the requirements.
- (d) After revise the value , through " ← " button and " → " button to increase or decrease , through" SET " button to move.
- 5. Panel explain and measurement information display (1) Panel instructions




(2) The contents of displayed page


Page	Content	Explanation
DISP=1 three phase voltage	a 5774 v b 5774 v c 5774 v	Separately display the voltage Us, Ub, Uc (3 phase 4 line), positive active energy. In left Fig Us=5774V Ub=5774V Uc=5774V

Page	Content	Explanation
DISP=2 three phase voltage	\$ 0.00 v 0.00 v 0.00 v 	Separately display the voltage Uab, Ubc, Uca (line voltage), In left Fig Uab=10kV Ubc=10kV Uca=10kV
DISP=3 three phase current	a 5.000 A b 5.000 A c 5.000 A	Disptay 3-phase current Ia, Ib, Ic, the unit is A. In left Fig Ia=5A Ib=5A
DISP=4 A phase separation Active Power Reactive power Power factor	a 86.60 w 0000 var 1.000 ∞sş	Show a phase separation Active Power Pa Reactive power Ca Power factor PFa Left Pa=80.56W Qa=Ovar PFa=1.0

Page	Content	Explanation
DISP=5 B phase separation Active Power Reactive power Power factor	86.50 W b 0000 var 1.000 cosp	Show b phase separation Active Power Pb Reactive Power Ob Power factor PFb Left Pb=86 6kW Qb=0yar PFb=1.0
DISP=6 C phase separation Active Power Reactive power Power factor	86.50 w 0000 var ° 1.000 cosp	Show c phase separation Active Power Pc Reactive power Qc Power factor PFc Left Pc=86.6kW Qc=0yar PFc=1.0
DISP=7 Three phases total Active Power Reactive power Power factor	86.60 w 2 0000 var 1.000 cosp	Display three phase total Active Power P Reactive power Q Power lactor PF Left P=86.6kW Q=Ovar PF=1.0

Page	Content	Explanation
DISP=1 three phase voltage Positive active energy	* 5 7 7 4 v * 5 7 7 4 v * 5 7 7 4 v T 00290805 ***	Separately display the voltage Us, Ub, Uc, (3 phase 4 line), positive active energy. In left Fig. Use-5774V Ub-5774V Ub-5774V Positive active energy = 2908.05kWh
DISP=2 three phase voltage Negative active energy	ab (000 kV bc (000 kV T -000 000 2 km	Separately display the voltag Uab, Ubc, Uca (line voltage), negative active energy. In left Fig Uab=10kV Ubc=10kV Uca=10kV Regative active energy =1000.02kWh
DISP=3 three phase current Positive reactive energy	* 5.000 A * 5.000 A T 00005000 August	Display 3-phase current Ia, Ib Ic, the unit is A. Positive reactive energy In left Fig Ia=5A Ib=5A Ic=5A Positive reactive energy =50.00kvarh

Page	Content	Explanation
DISP=4 Total active power Total reactive power Total apparent power Negative reactivepower	Σ 8 5.5 Ω M Σ Ω Ω Ω Ω MA Σ Ω 8 5.5 Ω MA T - 000 10 000 8 kvarb	Total active power =86.60kW Total reactive power =0000kvar Total apparent power =66.60kvA Negative reactive power =100.08kvarh
DISP=5 A phase active power A phase reactive power A phase appar ent power Positive active power	a 2007 M	A phase active power =28.87kW A phase reactive power =0000kvar A phase apparent power =28.87kVA Positive active power =2908.05kWh
DISP=6 B phase active power B phase reactive power B phase apparent power Negative active power	D 0000 kwar 2000 kwar 7 -001000002 k m 1 -001000002 k m	B phase active power =28.87kW B phase reactive power =0000kwar B phase apparent power =28.87kVA Negative active power =1000.02kWh

-11-

Page	Content	Explanation
DISP=7 C phase active power C phase reactive power C phase reactive power C phase apparent power Positive reactive power	2887 M 0000 kvar 00005000 kvar T 00005000 kvarh an 4 4 4	C phase active power = 28.87kW C phase reactive power = 00000kar C phase apparent power = 28.87kVA Positive reactive power = 50.00kvarh
DISP=8 Current Unbalance Average current Voltage Unbalance	0 1 0 0 ° 5.000 ° T - 00005 0.00 ° 0 • • •	Displayed in left Fig Current Unbalance: 1% Average current=5A Voltage Unbalance: 1% Negative Reactive Energy =50.00kvarh
DISP=9 Three phase total power factor, Frequency, Average Voltage	2 1000 ° 2 5000 ° 2 5000 ° 1 00290805 ° 1 00290805 ° 1 00290805 °	Displayed in left Fig Three phase total power factor =1,000 Frequency=50Hz Average Vollage=9V positive active energy =2908.05kWh

Page	Content	Explanation
DISP=10 Power factor for each phase		Displayed in left Fig A phase power factor =0.999 B phase power factor =0.999 C phase power factor =0.999 Negative active energy =1000.02kWh
priced	† -00100005 ***	Negative active energy

-13-

Three phase AC current/voltage meter User Manual

1. Product Introduction

The three-phase AC current/voltage meter is designed for power systems, industrial and mining enterprises, public facilities, and intelligent large

Designed for the needs of intelligent power monitoring and energy metering in Xiamen and other occasions, capable of high-precision measurement of three-phase

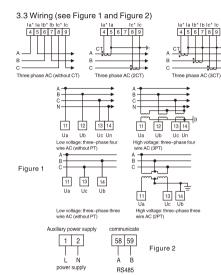
All commonly used power parameters in the power grid: three-phase voltage, three-phase current, frequency, and equipped with 485 communication.

2. Technical Parameter

	Project		Parameters		
	Connection		Three phase three wire/three phase four wire		
0	ζ.	range	100V, 380V		
ign	Voltage	overload	Continuous: 1.2x, instantaneous: 2x/1S		
<u>a</u>		consumption	< 1VA (per phase)		
Signal input	Ω	range	AC(10mA ~ 5A)		
=	Current	overload	Continuous: 1.2x, instantaneous: 10x/5S		
	ã	consumption	< 1VA		
		Frequenc	y (45 ~ 65)Hz		
P	Power supply		AC/DC60 ~ 280V、 ≤5VA		
Co	Communication		Rs485 communication interface, physical layer isolation MODBUS–RTU protocol that meets international standards Communication speed 1200-38400 Verification methods N81, E81, 081		
	Accu	racy	Electric parameters: 0.5 class, frequency: ± 0.2Hz		
Dis	Display method		LED digital tube display, LCD liquid crystal display		
E	Environment		Working temperature: −10~+45 °C Storage temperature: −25~+50 °C Relative humidity: < 85% RH		
	Security		Insulation: input, power supply, and output terminals have a resistance to the shell greater than 100M Ω Withstand voltage: input/power: 2kV, power/output: 2kV, Input/output: 1kV		

3. Installation and wiring

3.1Size (mm)


Face frame size 96*96, opening size 91*91, cabinet entry depth 38 Face frame size 80*80, opening size 76*76, cabinet entry depth 38 Face frame size 72*72, opening size 67*67, cabinet entry depth 38

3.2 Functional Description of Wiring Terminals

Power supply	1,2	AC/DC60~280V、 ≤5VA	
Current signal	4,5,6,7,8,9	4,6,8 are the three-phase current input terminals 5,7,9 are the three-phase current output terminals	
voltage signal	11,12,13,14	Respectively for three–phase voltage input Ua, Ub, Uc, Un	
RS485	58,59	Respectively A and B	

Instructions for use

- (a) 1 and 2 are auxiliary power supplies for instrument operation. Please ensure that the power supply is suitable for this series of products to prevent damage to the products.
- (b) 4, 6, and 8 are the incoming terminals of the current transformer, with * indicating the incoming terminals of the current.
- (c) Three phase three wire connection method: In a three phase three wire network, the B phase current does not need to be connected, and Ub is connected to terminal 14. The specific wiring can refer to 3.3 wiring.
- (d) For detailed use of wiring terminals, please connect according to the wiring diagram on the specific product casing.

Attention: Two wiring methods can be set inside the instrument, and the actual wiring method and the setting method inside the instrument must be consistent, otherwise the measurement data of the instrument will be inaccurate. The specific wiring method shall be based on the product's random wiring diagram.

4. Programming Operations

In programming mode, the digital display interface adopts a hierarchical menu structure, and the instrument

The table provides three rows of numerical displays:

The first row is the first layer of menu information;

The second row is the second layer of menu information;

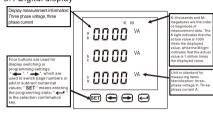
The third row is the third layer of menu information;

As shown in the following figure:

Layer 1: INPT signal input, Layer 2: CT current ratio Layer 3: 5 represents the current CT value, Set the current specification CT value to 25/5A=5.

The organizational structure of the digital display interface menu is as follows, and users can choose appropriate setting parameters according to their actual situation.

Tier 1	Tier 2	Tier 3	Describe	
System	Page display DISP	0000 ~ 0003	0000 indicates automatic cycle display mode	
settings SET	Backlight display time DISL	0001 ~ 0003 or 0000 ~ 0120	0001-0003 are LED digital tube brightness adjustments 0000-0120 are LCD backlight displays Hold time (0000 is the backlight always on)	
Signal input INPT	Wiring method NET	0000 or other values	0000 represents three-phase four wire Other values represent three-phase three wire	
	Voltage ratio PT	1 ~ 9999	PT value=primary/secondary value of transformer	
	Current ratio CT	1 ~ 9999	CT value=primary/secondary value of transformer	
	Mailing address SN	1 ~ 247	Instrument address range: 1-247	
Communication settings CONi(i is 1-2)	Communication speed BAUD	0001 ~ 0006	0001or1200; 0002or2400; 0003or4800; 0004or9600; 0005or19200; 0006or38400	
	Communication check bit DATA	0000 ~ 0002	0000:E,8,1; 0001:0,8,1; 0002:N,8,1;	


Note: The above menu items are all functional menu items. If the user finds that some menu items in the menu are missing or ineffective compared to the above table during use, it indicates that the product selected by the user does not support this function.

4.1 Programming steps

Press and hold the SET key for 3 seconds first stage second stage third stage 0000 mean automatic cycling display type System settings LED brightness adjustment. keeping time of LCD back light → 0000 means 3 phase 4 line other values means 3 phase 3 line. Signal input 1-9999: Voltage multiple rate Programming Menu Schematic range:1-9999 1-9999: Current multiple rate range: 1-9999 CT wiring method selection 3CT: 0000 means 3 CT 2CT: 0001 means 2 CT Meter communication address range: 1-247 Communication se 0001 means 1300,0002 means 3100 0003 means 4800 0004 means 9600 → 0000 means E, 8, 1; 0001 means 0, 8, 1; 0002 means N. 8.1 Cor SET Cor zero-position blanking of voltage signal (CT secondary value setting) 0500 means the blanking not display below 05V Loc zero-position blanking of current signal (CT secondary value setting)0010 means blanking setting 00 10 the blanking not display below 0.01A factory reset

5, Panel Description and Measurement Information Display

5.1 Digital display

Transportation and storage

6.1 The transportation and unpacking of products should not be subjected to strong impact. They should be transported and stored in accordance with the provisions of GB/T 25480-2010 'Basic Environmental Conditions and Test Methods for Transportation and Storage of Instruments and Meters', and placed according to the requirements on the packaging box.
6.2 Store the product in its ordiginal packaging, with a storage environment

6.2 store the product in its original packaging, with a storage environment temperature of ~25 °C~+50 °C and an average relative humidity of no more than 85%. The storage environment should be free of corrosive gases and should be moisture-proof.

6.3 The product should be stored in the warehouse and placed on a shelf, with a stacking height of no more than 6 boxes for unpacking Afterwards, the stacking height of a single packaged product shall not exceed

10 pieces.

6.4 Shell caused by severe impact or falling from high altitude during

6.4 Shell caused by severe impact or falling from high altitude during transportation, use, and installation

When there are obvious signs of damage, please do not power up the corresponding meter and contact the supplier as soon as possible.

7. Company commitment

Within 18 months from the date of production of the product, during normal customer storage, transportation, maintenance, and use,

If the company seal is intact and not removed, it cannot be used normally due to manufacturing issues with the product

Provide "three guarantees" service during usage.

Single phase AC current/voltage meter

1. Product Introduction

A single–phase AC current/voltage meter is designed for the intelligent monitoring and energy metering needs of power systems, industrial and mining enterprises, public facilities, intelligent buildings, and other occasions. It can measure voltage and current parameters in single–phase power grids with high accuracy and is equipped with a 1-channel communication interface.

2. Technical Parameter

project		:t	Parameters		
	Connection		single phase		
		range	AC: 100V、380V、600V		
	voltage	overload	Continuous: 1.2 times Instantaneous: 2 times		
_		consumption	< 1VA		
INPUT	current	range	AC: 1A, 5A		
-		overload	Continuous: 1.2 times Instantaneous: 2 times		
		consumption	< 1VA		
	Freq	uency	(45 ~ 65)Hz		
Р	Power supply		AC/DC60 ~ 280V、 ≤5VA		
Со	Communication		RS485 communication interface, physical layer isolation MODBUS-RTU protocol that meets international standards communication speed 1200-38400 Verification methods N81, E81, 081		
Mea	Measurement level		Electric quantity: 0.5, frequency: ± 0.2Hz		
Di	Display method		LED digital tube display, LCD liquid crystal display		
6	environn	nent	Working temperature: -10~+45 °C Storage temperature: -25~+55 °C Relative humidity: < 85% RH		
Security		ty	Insulation: Resistance of input, power supply, and output terminals to the housing $>$ 100M Ω Withstand voltage: input/power: 2kV, power/output: 2kV, input/output: 1kV		

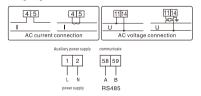
-01-

3. Installation and wiring

3.1Size (mm)

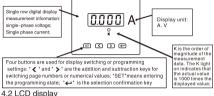
Face frame size 96 * 96, opening size 91 * 91, cabinet entry depth 38 Face frame size 80 * 80, opening size 76 * 76, cabinet entry depth 38 Face frame size 72 * 72, opening size 67 * 67, cabinet entry depth 38 3.2 Functional Description of Wiring Terminals

Power supply	1.2	AC/DC60 ~ 280V、 ≤5VA	
current signal	4,5	4 is the current input terminal	
voltage signal	11,14	11 represents the high end of the voltage and 14 represents the low end of the voltage	
RS485	58.59	Respectively A and B	

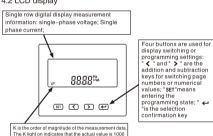

Instructions for use

(a) 1 and 2 are auxiliary power supplies for instrument operation.

Please ensure that the power supply is suitable for this series of products to prevent damage to the products.


(b) 4 represents the incoming terminal of the current transformer. and the terminal marked with * represents the incoming terminal of the current.

3.3 Wiring diagram


4. Panel Description and Measurement Information Display

4.1 LED digital tube display

times the displayed value:

Display units: A. V

-02-

4.3 Page Display Content

page	content	illustrate
DISP=1 voltage	2200 ×	voltage=220.0V
DISP=2 current	5.000 ^	current=5.000A

5. Programming Operations

In programming mode, the digital display interface adopts a hierarchical menu structure, and the instrument provides a single row of digital display:

The first level is the first level of menu information:

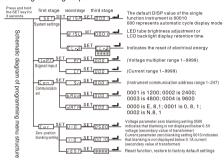
The second level is the second level menu information;

The third level is the third level of menu information.

As shown in the following figure:

Level 1: INPT signal input

Level 2: CT current ratio


Level 3: 5 current CT value, set to current specification CT=25/5A=5.

The organizational structure of the digital display interface menu is as follows, and users can choose appropriate setting parameters according to their actual situation.

Tier 1	Tier 2	Tier 3	Describe
	Page Display DISP	0001	The default DISP value of the single function instrument is 0001
System settings SET	Brightness/backlight display time DISL	0001–0003 or 0000–0120	0001~0003 are LED tube brightness adjustment 0000~0120 is the LCD backlight display holding time (0000 is the backlight always on)
a: .: .	Voltage ratio PT	1 ~ 9999	PT value=primary/secondary value of transformer
Signal input INPT	Current ratio CT	1 ~ 9999	CT value=primary/secondary value of transformer
	address SN	1 ~ 247	Instrument address range: 1-247
communication CONL	Communication speed BAUD	0001 ~ 0006	0001 is 1200; 0002 is 2400; 0003 is 4800; 0004 is 9600; 0005 is 19200; 0006 is 38400;
	Communication check bit DATA	0000 ~ 0002	0000:E,8,1; 0001:0,8,1; 0002:N,8,1;

5.1 Programming steps

Operating instructions:

(a) After changing the data (or options) of the third level menu, press " — "

The key must be pushed back to the second level menu to take effect

- (b) The wiring method can be modified according to the actual on-site wiring method.
- (c) In general, the label behind the instrument already indicates the class of the instrument

Type parameters, users can also reprogram and set the instrument according to actual needs.

(d) When changing values, use the "\(\)" and "\(\)" keys to increase or decrease

Small, shift through the "SET" key.

6.2 Example of alarm setting:

6. Transportation and storage

6.1 The transportation and storage of Instruments should be in accordance with Chapter 4 of GBI7 25480–2010 'Basic Environmental Conditions and Test Methods for Transportation and Storage of Instruments and Meters'. The storage environment temperature should be between −25 °C and+50 °C, with a relative humidity not exceeding 85%, and the harmful substances in the air should not be sufficient to ause corrosion of the instruments.

6.2 The product should be stored in the warehouse and placed on a shelf with a stacking height of no more than 6 boxes. After unpacking, the stacking height of a single packaged product should not exceed 10.6.3 Please do not power on the meter and contact the supplier as soon as possible when there are obvious signs of damage to the casing caused by severe impact or falling from a height during transportation, use, and installation.

7, Company commitment

7.1 Within 24 months from the date of production of the product, if the customer's normal storage, transportation, maintenance, and use, and the company's seal is intact and not removed, and the product cannot be used normally due to manufacturing issues, the "three guarantees" service shall be provided.

RS485 Protocol

1. Protocol

1. 1 Physical laver

- 1.1.1 RS485 communication port, asynchronous half-duplex mode;
- 1.1.2 Communication speed 1200-38400bps can be set, factory default 9600dps;
- 1.1.3 Byte transfer format: 1 bit for initial bit, 8 bit for data bits, odd-even check
 (N81, E81, 081 can be selected), factory default N81.

1.2 Digital communication protocol

The meter is provided with serial asynchronism half-duplex RS4485 communication ont, adopt MODBUS-RTU protocy, various data can be transferred through communication line. One line can connect 32pcs meter at the same time, each meter can set different communication address. The communication terminal number of different series meters is different. communication should be connected by the shielded twisted-pair cable with copper network, and the diameter not less han 0.5mm² When wiring. keep the communication wire away from strong electric cables or other strong electric field, T type network Wiring is recommended (see Fig. 1.\$1at-vice or other wrins is not recommended.)

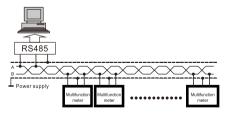


Fig.1